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Although the formation of vinylidene transition-metal com­
pounds as intermediates in various C-C coupling reactions has 
been postulated,1 examples for an intramolecular migration of a 
metal-bound hydrocarbyl group to a vinylidene ligand are still 
very rare.2-3 Following our recent work on the synthesis of trans-
[Rh(C=CR)(=C=CHR)(P-i'-Pr3)2] from [(^-C3H5)Rh(P-;-
Pr3) 2] and 2 equiv of 1-alkynes HO=CR,4 we describe a general 
route to the corresponding alkyl-, aryl-, and vinyl(vinylidene)-
metal derivatives J/ww-[Rh(R)(=C=CHR')(P-f'-Pr3)2] and the 
CO- or isocyanide-initiated coupling of the ligands R and 
C=CHR' to give substituted vinyl- and butadienylrhodium(I) 
complexes. 

Compound la, which was prepared from [RhCl(P-j'-Pr3)2] and 
phenylacetylene,5 reacted with an equimolar amount of CH3-
MgI in ether-toluene at -30 0C to give trans-[Rh(CH3)-
(=C=CHPh)(P-i-Pr3)2] (2) as light-violet crystals in 87% yield. 
In contrast to the starting material la, the methyl derivative 2 
is only stable as a solid and slowly decomposes in solution. The 
phenyl(vinylidene) and vinyl(vinylidene) complexes 3 and 4 
(Scheme I) were obtained in the same way, using CeH5MgBr in 
ether and CH2=CHMgBr in ether-THF as substrates.6'7 In 
order to prove that even a very bulky and also electron-donating 
substituent R' at the 0-C atom of the vinylidene ligand can be 
tolerated, compound 5 was prepared from lb8 and CeH5MgBr. 
It was also isolated in 87% yield. The most characteristic feature 
of the spectroscopic data of 2-5 is the low-field position of the 
vinylidene a-carbon signal in the 13C NMR spectrum, which 
appears at 8 290-300 (in C6D6) and shows a strong Rh-C coupling 
(ca. 47 Hz). 

The new alkyl-, aryl- and vinyl(vinylidene) complexes are highly 
reactive toward carbon monoxide and tert-butyl isocyanide. When 
CO was passed for 10 s through a solution of 2-5 in toluene or 
pentane at -30 0C, a characteristic change of color from violet 
to yellow took place, and after recrystallization from acetone 
(-30 0C), yellow crystals of 6-9 were isolated in almost 
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quantitative yield.9 According to the NMR spectra, there is no 
doubt that the Z isomers having the substituents R and R' in a 
trans orientation at the C=C double bond were formed exclu­
sively.10 The reactions of 2 and 3 with CN-J-Bu occurred 
selectively as well and gave compounds 10 and 11 as yellow 
crystalline solids in 70-80% yield. With regard to the mechanism 
of the migratory insertion process we assume that initially CO 
or CN-J-Bu adds to the rhodium atom, thus generating a five-
coordinate intermediate, which after migration of the group R 
on the a-carbon of the vinylidene ligand transforms to the isolated 
product. The importance of steric factors probably explains why 
the attack of R occurs only at that side of the molecule which 
is opposite to R' (Ph or J-Bu). 

The stereochemical assignment shown in Scheme I was 
confirmed by the X-ray crystal structure analysis of 8.11 The 
results are summarized in Figure 1 along with the principal bond 
lengths and interbond angles. The Rh-Cl distance of 2.088(5) 
A is significantly longer than in Jra«i-[RhCl(=C=CHMe)(P-

(9) A typical procedure for the preparation of 6-9 is as follows: A slow 
stream of CO was passed for 10 s through a solution of 3 (115 mg, 0.19 mmol) 
in 3 mL of toluene at -30 0C. After the solution was stirred for 5 min, the 
solvent was removed in vacuo. The residue was dissolved in 2 mL of acetone, 
and the solution was cooled to -30 0C. After 24 h, yellow crystals of 7 
precipitated, which were separated and repeatedly washed with 2 mL of acetone 
(-30 0C): yield 112 mg (93%); mp 106 0C. For 6 (mp 148 0C), 8 (mp 96 
"C), and 9 (mp 89 "C), the yield was 87%, 92%, and 91%, respectively. 

(10) Selected spectroscopic data are as follows. 6: IR (KBr) i/(CO) 1925 
cm-1; 1H NMR (C6D6, 200 MHz) S 7.22 (m, =CHR'), 2.40 (s, RhCCZf3); 
13C(1H) NMR (C6D6, 50.3 MHz) S 195.85 (dt, W c = 53.2, JT-c = 15.3 Hz, 
CO), 182.28 (dt, ZR1-C = 28.7, /P_c = 14.3 Hz, RhCCH3), 135.62 (t, Jf-c -
3.7 Hz, RhC(R)=CHR'), 33.37 (dt, W c = 2.4, /P-c = 2.4 Hz, RhCCH3). 
7: IR (KBr) KCO) 1930 cm"1; 1H NMR (C6D6, 200 MHz) S 7.64 (dt, ZR4-H 
= 2.0, JT-H = 2.0 Hz, =C//R') ; 13C(1H) NMR (C6D6, 50.3 MHz) S 195.48 
(dt, /Rb-c = 54.7, /P_c = 15.9 Hz, CO), 181.40 (dt, . W c = 29.4, /P-c = 14.0 
Hz1RhCR), 137.32 (t,7P-c = 4.5 Hz, RhC(R)=CHR'). 8: IR(KBr)KCO) 
1930cm-1; 1H NMR (C6D6,200 MHz) S 7.49 (m, =CHR'), 5.39 (dd, / H I - H : 
= 16.7, /H2-H5 = 3.1 Hz, CW=CfPm, 4.88 (dd, 7HI-H3 = 10.0, Jm.m = 
3.1 Hz, CW=CH1H1), signal of H1 covered by the multiplet of the C6H5 
protons; 13C(1H) NMR (C6D6, 50.3 MHz) S 195.66 (dt, W c = 54.0, /P-c 
= 15.2 Hz, CO), 181.62 (dt, W c = 28.2, /P_c - 13.9 Hz, RhCR), 152.72 
(s, RhC(CH=CH2)), 136.53 (t, /P_c = 3.7 Hz, RhC(R)=CHR'), 108.60 (s, 
RhC(CH=CH2)). 9: IR (KBr) KCO) 1930 cm"1; 1H NMR (C6D6, 200 
MHz) i 6.63 (dt, /Rh-H = 1.8, /P-H = 2.0 Hz, =Cr7R'), 1.51 (s, CCW3); 
13C(1H) NMR (C6D6, 50.3 MHz) S 195.56 (dt, W c = 54.3, /p_c = 16.9 Hz, 
CO), 162.57 (dt, W c = 30.3, /P_c = 13.4 Hz, RhCR), 147.41 (t, /P_c = 3.9 
Hz, RhC(R)=CHR'), 35.12 (dt, W c = 1.2, /P_c = 1.2 Hz, CCH3), 31.80 
(t,/P_c = 1.6 Hz, CCH3). 
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Figure 1. SCHAKAL diagram for the molecular structure of complex 
8. Principal bond lengths (A) and inter bond angles (deg): Rh-Cl 2.088-
(5), Rh-Pl 2.338(1), Rh-P2 2.340(1), Rh-C29 1.815(6), C29-0 1.171-
(6), C1-C2 1.470(6), C2-C3 1.299(7), C1-C4 1.356(6), Pl-Rh-P2 
167.73(4), Pl-Rh-Cl 91.4(1), P2-Rh-Cl 91.5(1), Pl-Rh-C29 88.8-
(2), P2-Rh-C29 89.1(2), Cl-Rh-C29 175.7(2), Rh-C29-0 175.2(5), 
Rh-Cl-C2 116.5(4), Rh-Cl-C4 128.1(4), C1-C2-C3 127.0(6), C l -
C4-C5 129.7(5), C2-C1-C4 115.4(5). 

'-^3)2] (1.775 A)5 and corresponds to that found for Rh-C(C6H5) 
in [(C5Me5)Rh(C6H5)(PPh3)Br] (2.08(1) A).12 The C4-C1-
C2-C3 torsional angle is 46.95° and quite similar to that 
determined recently for the cobalt-substituted 1,3-butadiene [Co-
{C(CH=CH2)=CH2}(NC5H4-4-f-Bu)(DMG)2] (54.50).13 

(11) Crystal data for 8: monoclinic, P2x/n, a = 10.640(3) A, * = 20.070-
(3) A, c - 15.476(5) A,/8 = 108.05(1)°, V= 3142.3 A3, Z = 4, ZW = 1.23 
g cm-3, T = 293 K, Ji(Mo Ko) = 6.5 cm-'. Data were collected on an Enraf-
Nonius CAD4 diffractometer using «/2 fl-scan mode (2Sn,, = 48°); of the 
4157 reflections measured, 3563 were unique and 2569 had F0 > 3a(F0); 298 
variables were refined to give R = 3.4% and Rw = 3.5% with a reflex-parameter 
ratio of 8.62 and a residual electron density of +0.37/-0.24 e A-3. 

(12) Jones, W. D.; Kuykendall, V. L. Inorg. Chem. 1991,30,2615-2622. 

The cleavage of the vinyl- or dienyl-rhodium bond in 6-9 by 
acetic acid in benzene proceeded slowly at room temperature and 
gave, besides *r0w-[Rh(O2CCH3)(CO)(P-^Pr3)2],14exclusively 
the E olefins RCH=CHR' and PhCH=CHCH=CH 2 , respec­
tively. With complex 9 as a substrate, preliminary experiments 
(performed in an NMR tube) indicate that with stronger acids 
the Rh-C cleavage reaction takes a different course and possibly 
leads to the 1,3-disubstituted allene PhCH=C=CHCH 3 . 

In conclusion, the results described in this paper illustrate that 
a stereoselective coupling of an alkyl, aryl, or vinyl group with 
a vinylidene unit can occur in the coordination sphere of rhodium-
(I). This migratory insertion process can be considered as a 
counterpart to the coupling of a hydrocarbyl moiety with a carbene 
ligand, for which several examples are known.15 The closest 
analogy to the synthesis of 6-11 we are aware of consists of the 
reaction of the iridium(III) vinylidene [IrCH3(=C=CH2)I{»?3-
N(SiMe2CH2PPh2)2}] with acetonitrile, which gave the vinyl 
complex [Ir{C(CH3)=CH2}(NCMe)I{7?

3-N(SiMe2CH2PPh2)2}] 
in 33% isolated yield.3 
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